

LIFEFORCE – Customer Testimonials

- Mare in foster care with a BCS of barely 1.5 on the Henneke Scale.
- Started adding Lifeforce to her rations within a week of her arrival.
- Kept on Lifeforce during her recovery, and was able to achieve a BCS of nearly 4 in 2.5 months
- Lifeforce proved to be a valuable asset in her recovery.

"WINDY" Mare - Arabian - 27 years old Leisure Riding BEFORE

"WINDY" Mare – Arabian - 27 years old Leisure Riding AFTER – 8 WEEKS

"FANCY" Mare - QH X - 27 years old Barrel Racing **BEFORE**

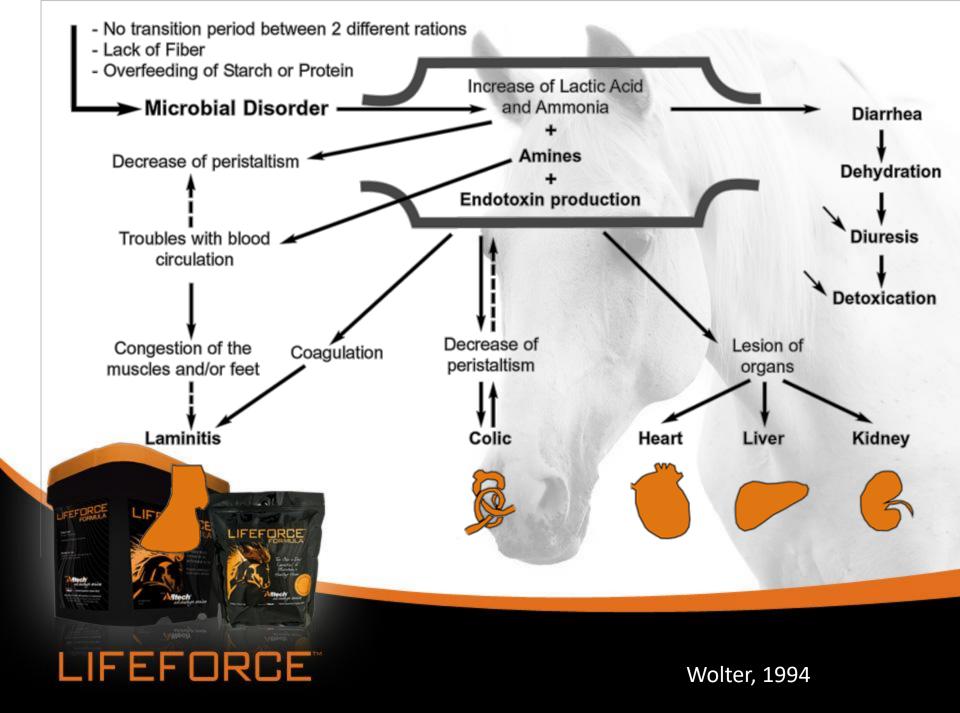
"FANCY" Mare - QH X - 27 years old Barrel Racing **AFTER – 9 WEEKS**

"REGGIE" Gelding – WB – 12 years old Jumper **BEFORE**

"REGGIE" Gelding – WB – 12 years old Jumper AFTER – 10 Weeks

"MHS King Joules" Gelding – Eventer- 6 years old BEFORE

"MHS King Joules" Gelding – Eventer- 6 years old AFTER


Introduction

- normal gut function = combination of management and animal factors
- organic mineral supplementation
 - potential advantages in digestion, absorption and transfer to tissues
 - generally accepted bioavailability > organic forms of minerals.
- Mycotoxin threat

Gut function

The Equine GI tract

- Horse evolved requirement for minimum amount of dietary fibre
 - food source for micro-organisms
- Can digest very little starch at any one time
- ⇒ small intestine struggles to deal with > 3-4g
 starch per kilogram of body weight per meal (Potter et
 al., 1992)
 - Current recs = 1g/kg BW/meal (Vervuert, 2009)

Disruption of normal gut function

- E.g. \downarrow fibre and/or \uparrow starch
 - $\Rightarrow \downarrow$ buffering capacity, caecal and blood pH
 - $-\Rightarrow$ acidosis
 - $-\Rightarrow$ bacterial endotoxins
- Acidosis = lowering of blood alkali reserves
 - sub-clinical vs. clinical
 - hard work + limited forage

Aim = stabilise gut environment

Yea-Sacc^{®1026}

- Improved fibre digestion

 Stimulates fibre-digesting bacteria
- Stabilises caecal/colon pH

 Increased lactic acid-utilizing bacteria
 Optimises beneficial microbial population

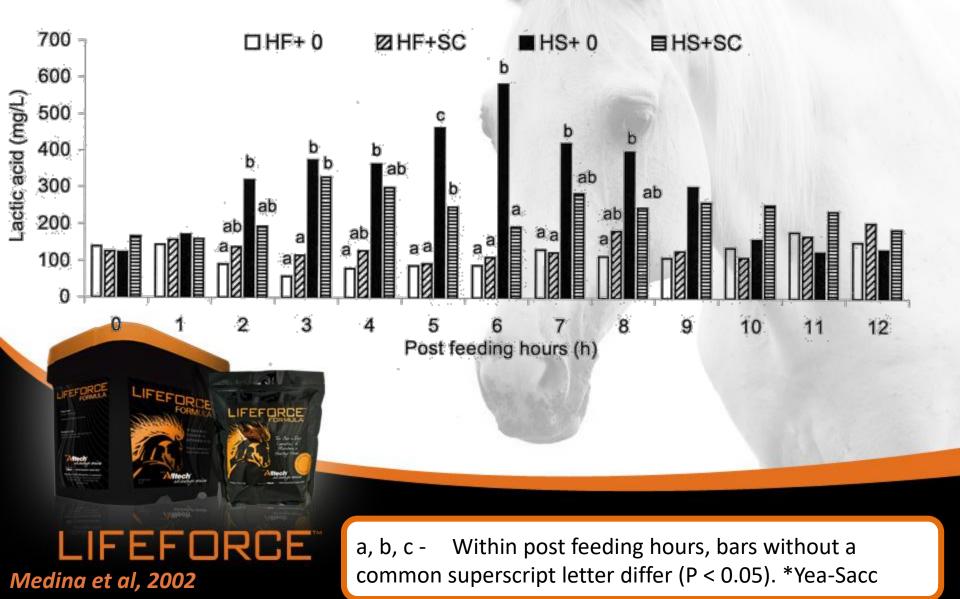
Higher phosphorous availability

Yeast supplementation (SC)* increased the apparent digestibility (g/kg of DM) of ADF in both high fibre (HF) and high starch (HS) diets

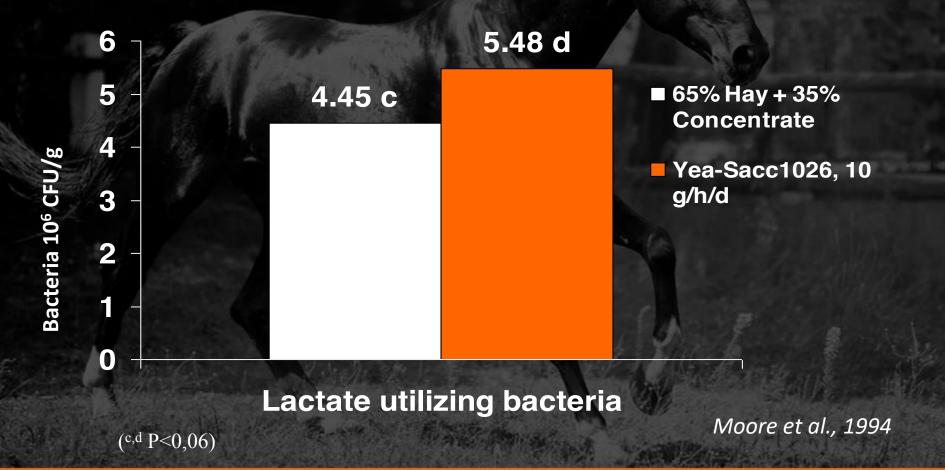
	HF diet		HS diet	
Item	HF+0	HF+SC	HS+0	HS+SC
DM	600 ^b	611 ^b	690 ^a	694 ^a
OM	611 ^b	623 ^b	718 ^a	716 ^a
CP	698 ^b	703 ^b	756 ^a	759 ^a
NDF	340	376	353	362
ADF	341 ^{ab}	377 ^a	315 ^b	341 ^{ab}
Cellulose	332 ^{ab}	359 ^a	319 ^b	327 ^b
Hemicellulose	338	374	395	385
AND IN A COMPANY AND AND	S. SWITCH ENGL	A MARTIN	A Section of the	
	a, b -	Means within a	row with diffe	rent

Jouany et al, 2008

Means within a row with different superscript differ, (P < 0.05). *Yea-Sacc


Effect of Yea-Sacc on fermentation characteristics in equine hindgut

Item and intestinal content	HF	HS	HS + SC
рН			in Mart
Caecum	7.15 ^a	6.85 ^b	7.01 ^c
Colon	7.14 ^a	6.79 ^b	6.88 ^b
Lactic acid (mg/L)			
Caecum	167.9 ^a	407.7 ^b	207.5ª
Colon	116.5 ^a	303.2 ^b	235.7°


Medina et al. 2002

a, b, c - Least squares means within a row are different if superscript differ (P < 0.05).

Supplementation of *S. cerevisiae* (SC)* diets reduced lactic acid production in the caecum

Effect of Yea-Sacc^{®1026} on Lactic Acid

Effect of Yea-Sacc on fermentation characteristics in equine hindgut

	HF	HF + SC	HS	HS + SC
Acetate (mM)				
Caecum	50.9 ^a	55.4ª	43.4 ^b	47.1°
Colon	68.1ª	74 .4 ^a	60.2 ^b	67.8 ^a
Butyrate (mM)				
Caecum	3.64 ^a	3.88ª	4.07 ^b	3.39 ^c
Colon	6.27 ^a	7.16 ^a	9.28 ^b	6.86 ^a
Propionate (mM)				
Caecum	12.8 ^a	13.8ª	17.7 ^b	18.6 ^b
Colon	17.6 ^a	16.8ª	20.1 ^b	22.9 ^c
Total VFA (mM)				
Caecum	68.1	73.9	66.7	70.0
Colon	94.0	100.7	91.7	99.8
			warmer and	15 x 1 Think

Medina et al. 2002

a, b, c -Least squares means within a row are different if superscript differ (P < 0.05)

Effect of Yea-sacc on detection of yeast in the hindgut

	HF+SC (log cfu/mL)	HS + SC (log cfu/mL)
Caecum	6.4	6.8
Colon	4.9	4.5

In un-supplemented horses, yeast numbers were below the level of detection

Jouany et al. 2009

Effect of Yea-sacc on hindgut microbial communities digestive capacity

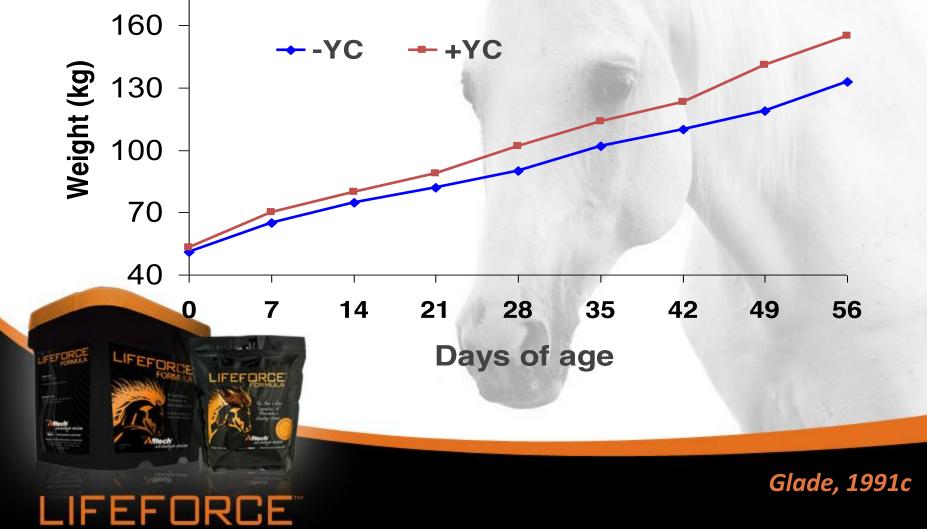
Item	HF	HF+SC	HS	HS + SC
Lactic-acid utilizing bacteria (log ₁₀ cfu/mL)				
Caecum	6.5	7.0**	6.9	7.5**
Colon	6.5	6.5	7.2	6.7
Lactobacillus spp (log ₁₀ cfu/mL)				
Caecum	6.5	6.6	6.8	7.2*
Colon	6.1	6.2	6.7	6.8

Yea-Sacc improves feed digestibility in lactating mares

R.F.		
Nutrient	-YC +YC	
DM	70.1 ^a 79.4 ^b	
CP	58.2 ^a 65.9 ^b	
ADF	47.8	51.1
NDF	59.2 ^a	69.4 ^b
Calcium	61.9	60.6
Phosphorous	<i>30.9</i> ^a	44.9 ^b
AND 1 - 1 - 1	- Marine Marine	
and the second of the second	Means with superscripts are significantly different	

Glade, 1991a

a, b P<0.01; c,d P<0.05. *Yea-Sacc


Resulted in increased milk and nutrient intake in nursing foals

	-YC	+YC
Mare's milk		
GE (Mcal/d)	60.61 ^a	68.28 ^b
Foal's intake		
Milk (kg/d)	14.58 ^a	16.33 ^b
GE (Mcal/d)	8.83 ^a	11.11 ^b
Average daily gain (kg/d)*	0.88 ª	1.20 ^b

Glade, 1991a

*over first four weeks of life

Faster foal weight gain from mares fed a yeast culture (YC)*

Increased nutrient supply to yearlings

	- 27 5			
Nutrient	-YC	+ YC		
apparent digestibility, % of intake				
DM	71.8	78.4		
NDF	56.5	71.0		
Hemicellulose	51. 4ª	78.5 ^b		
ADF	58.0	68.5		
	% of digested N			
Retained	12.6°	22.6 ^d		

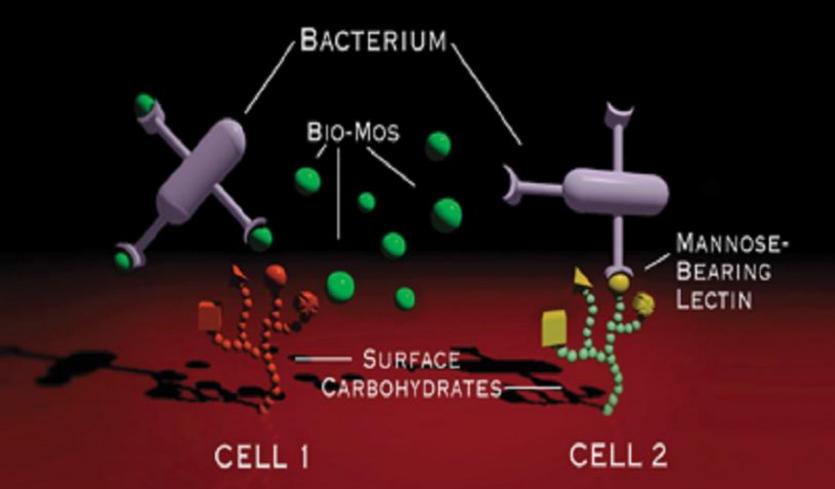
Glade and Biesik, 1986

Means within a row without a common superscript differ significantly a, b (P<0.05) c, d (P<0.01). * Yea-Sacc

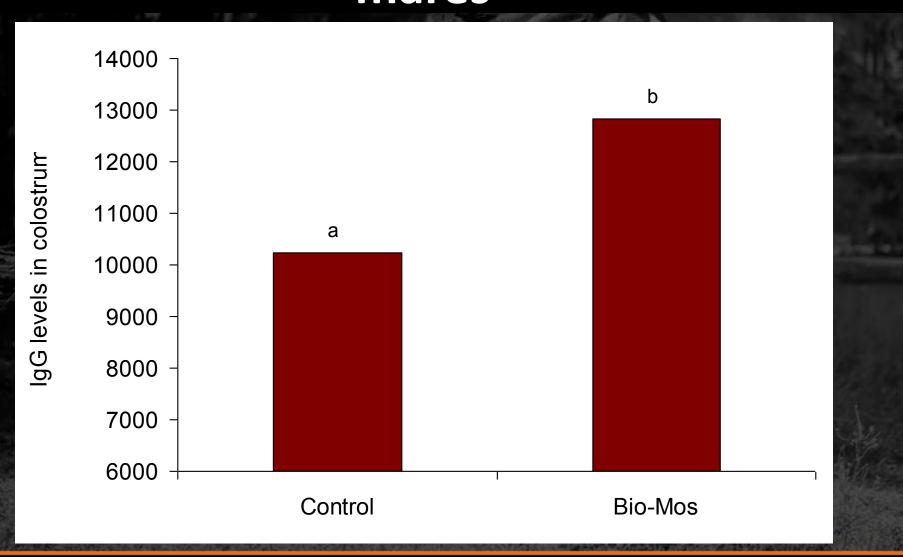
Conclusions on yeast supplementation

Stabilized caecal/colon fermentation

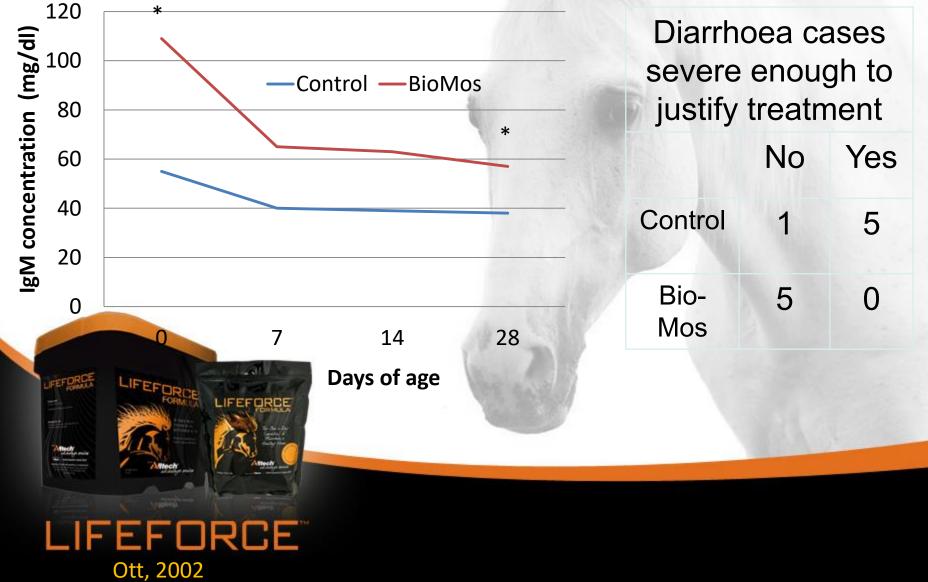
 Reduces the negative effects of a high starch diet


Reduces the risk of digestive disorders
Helping to prevent colic and laminitis

Another digestive problem....

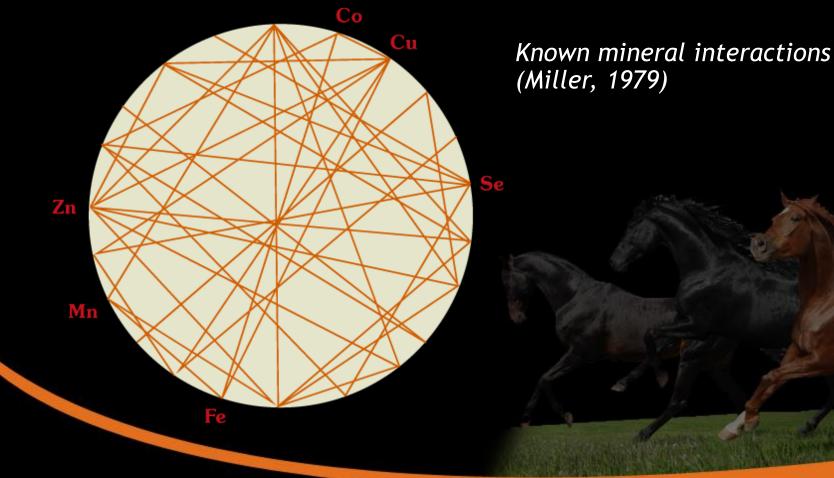

- Diarrhoea in young animals
 - poor hydration status and ill thrift
- feeding of antibiotics as a prophylactic = restricted in some countries
- Mannanoligosaccharides (MOS)
 - derived from yeast outer cell wall
 - capacity to bind pathogenic bacteria
 - Prevents adherence to/colonisation of gut lining

Pathogen adsorption mechanism


Bacteria attach to epithelial cells via lectins that recognize certain sugars Many enteric pathogens attach via Type I fimbria which recognize mannose

The effect of MOS on immune response of ^{a,b} P<0.05 mares

Ott et al., 2004


Effect of BioMos on foal serum IgM concentration

Mineral nutrition

Environmental mineral interactions: Common problem on many horse farms

Common interactions that reduce mineral availability

- Iron: interferes with Cu, Zn, Cr
 - Many pastures are high in Fe
- Cu and Zn compete for absorption sites
- High Ca binds trace minerals
- High P interferes with Mg, Mn, Zn and Ca
- Sulphur, sulphate: reduce Cu, Zn absorption
- Molybdenum: reduces Cu absorption

Mineral absorption

 Specific pathways and feedback mechanisms controlling mineral absorption not yet fully clear


However.....

 Most trace minerals require bonding with proteinbased carrier

Precipitated

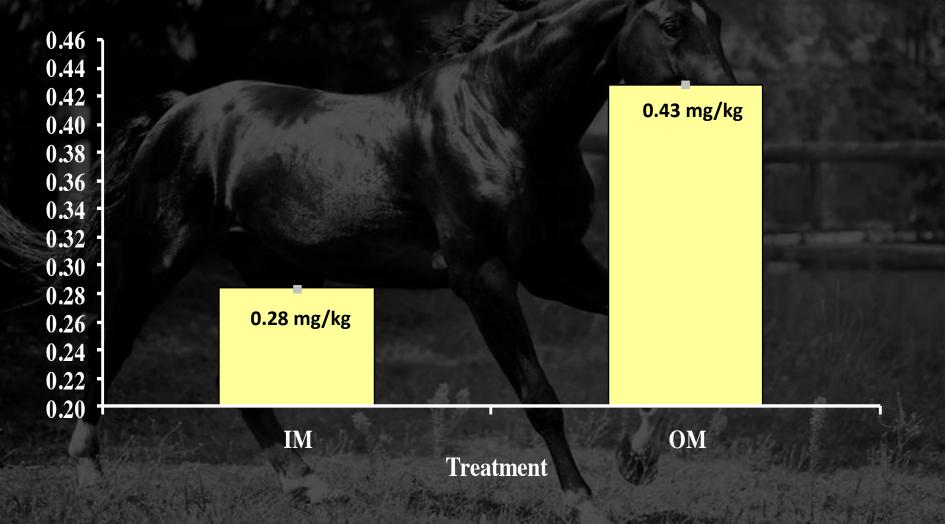
Unstirred water layer

Mucus

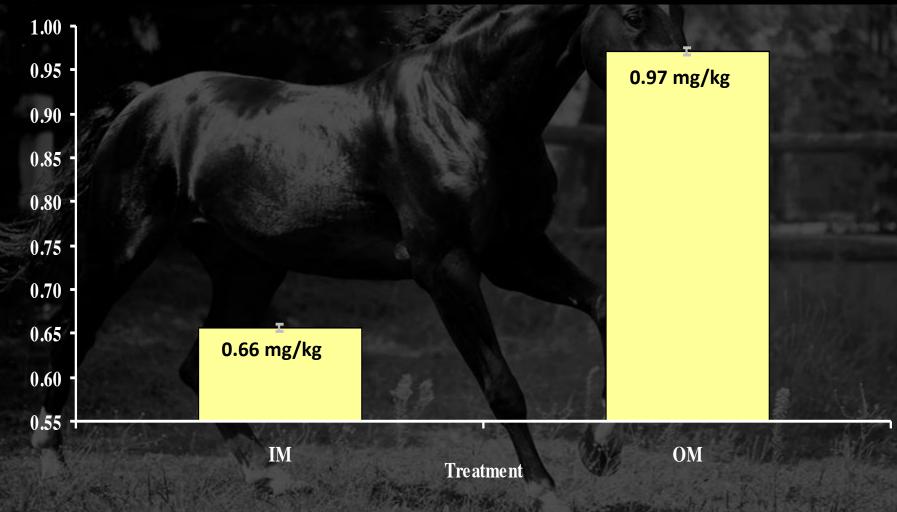
Enterocytes lining the villi

Unstirred water layer (600 μ m)

A deep protecting layer with a pH that causes certain ions to "hydroxy-polymerise", forming non-absorbable complexes that are precipitated and excreted.


Mucus layer (50-100 μ m)

Another protective layer, negatively charged, to act as a barrier against highly positively charged ions such as AI^{+3} . This is why Fe^{+2} is better absorbed than Fe^{+3} , and why Bioplex minerals are more easily absorbed than inorganic ions.

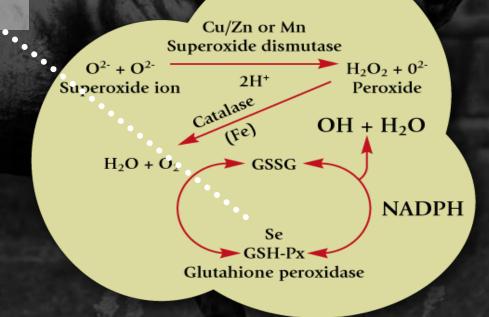

Enterocyte membrane

Thin lipophilic membrane where absorption into the bloodstream occurs.

Effect of Cu Source on overall mean apparent daily Cu balance (mg/kg BW; P < .001)

Effect of Zn source on apparent daily Zn balance (mg/kg BW; P < .001)

Antioxidant defence



Antioxidant function – the dreaded free radicals...

- O₂ essential
- detrimental effects of generating cellular energy from O₂
 - = free radicals (FR)
- mechanisms exist to minimise damage
- Enter the antioxidants.....
- → overall effect = FR + antioxidant response (Surai, 2007)

Maintaining optimal antioxidant function

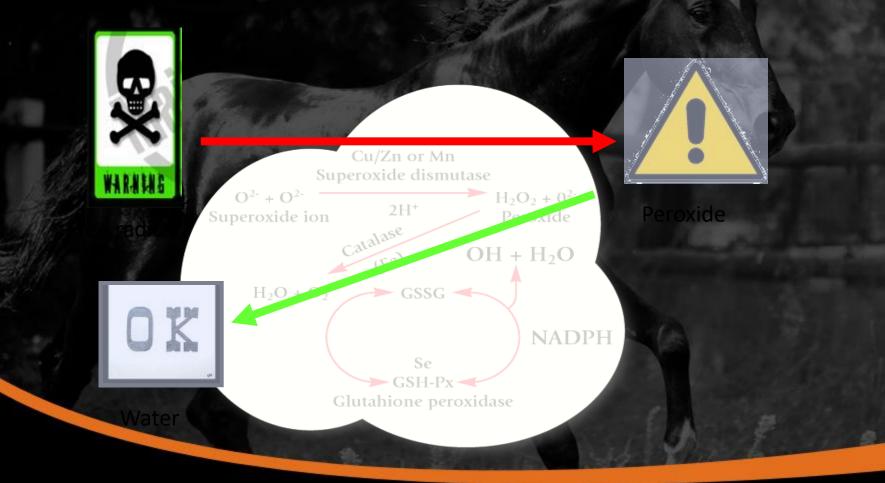
Zn, Cu, Mn, Fesse = co-factors for anti-oxidant enzymes

Selenium (Se) – physiological roles

Antioxidant

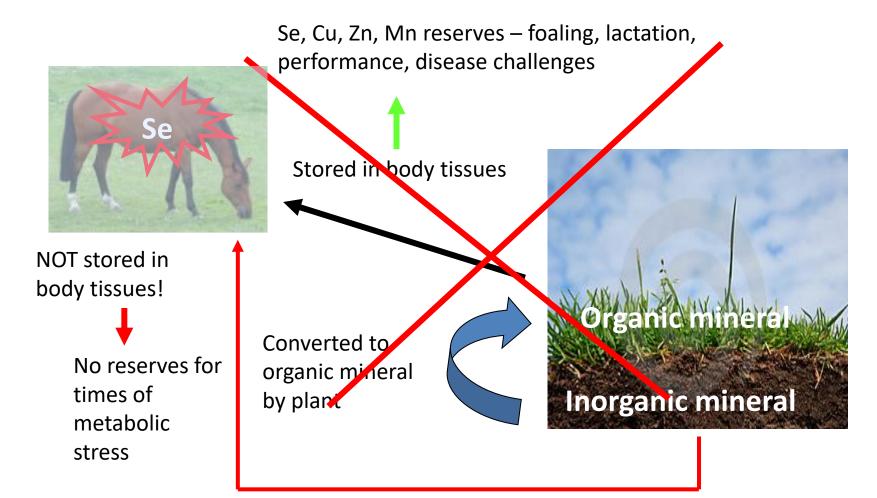
 Component of selenoproteins
 e.g. GSH-Px

Regulation of gene expression
– nutrigenomics
Immunocompetence
– Innate and acquired


 Thyroid metabolism
 Iodothyronine deiodinase = converts T₄ to T₃
 Mood

 Male fertility

 Sperm structure and integrity



Selenium = key antioxidant

The natural mineral cycle...

Feeding inorganic minerals breaks the cycle

Selenium yeast

 Many studies = greater incorporation of Se as selenoproteins/amino acids from selenium yeast

- Mahan, 2000
- Junpier *et al.,* 2006
- Pagan *et al.,* 1999
- Rock *et al.,* 2001

May also be benefits regarding toxicity

Effect on selenium status plasma & whole blood selenium

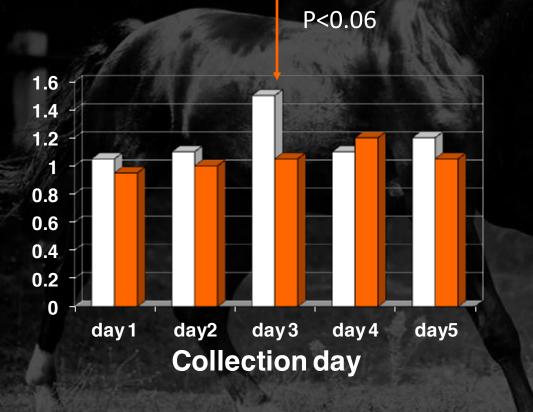
 Serum Se concentration higher with equal admin organic vs. inorganic suppl. in mares and their foals (Selplex).

– Janicki et al 2001

 Whole blood Se concentration higher with organic (selenium yeast) vs. inorganic source (3mg/kg dm) (Selplex)

– (Calamari *et al.,* 2008)

- No similar effects seen with SeMet
 - (Richardson et al., 2006)


Selenium Balance in Exercising Horses

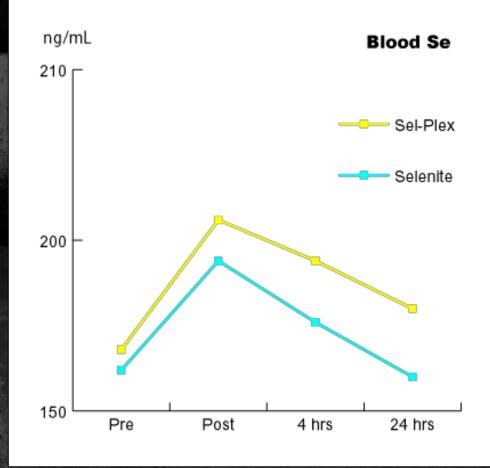
- Four trained horses receiving 2.9 mg Se/day from selenite or selenium yeast (Sel-Plex). Hay plus conc. feed
- Selenium balance determined in a total collection study (5 days feed, urine & feces).
- Response to exercise evaluated by measuring whole blood, plasma and urinary Se before and after a competition exercise test and at 4 and 24 hrs post-exercise.

Urinary Selenium Excretion Following Exercise

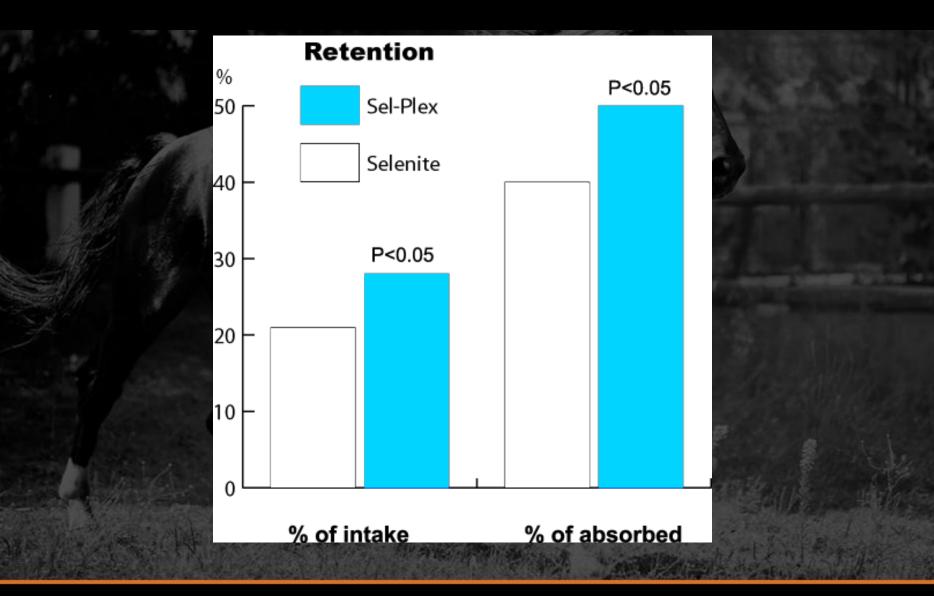
Exercise test

Increased urinary excretion of Se following exercise with inorganic vs. organic sources (p<0.05).

Selenite Sel-Plex


Summary

- Support for Se supplementation for all horses
- Some evidence for enhanced Se retention & status from organic forms
- Further evidence would strengthen this assertion
- Analysis of more sensitive biomarkers of Se functional capacity


Horses given Se yeast had a more positive Se balance

- Selenium mobilized at exercise onset
 - Blood Se remains
 elevated in Sel-Plex fed horses

Pagan et al., 1999

Higher selenium retention with Se yeast

Pagan et al., 1999

Selenium – what is normal?

- Random analysis of 12 horses (Nottingham Vet School)
 - only 1/12 horses had 'normal' (1.67 2.03 μM) plasma selenium levels
 - -3/12 = 'at risk' from muscular dystrophy problems
 - believed that these results would be mirrored on a larger scale

In the US - 202 horses

- values ranged from 50 260ng/ml
- normal is considered 130 160ng/ml.

A word about selenium toxicity

- NaSe = toxic to mammals over certain levels
- Horses appear very sensitive
- Feed Additive Directive 70/524/EC:
 - max supplementation = 0.5mg/kg in complete feeds with current dietary recommendations at 0.1mg/kg of the ration

21 Polo horse deaths linked to Sodium selenite

- "Chemist mistakenly added too much sodium selenite" – The Guardian
- "prescription had requested 0.5 mg of sodium selenite per millilitre of horse supplement, but the chemist had mistakenly included 5 mg" - La Nación

Mycotoxins

Mycotoxins

- 2° fungal metabolites
- contaminate feeds
- Leading to.....
 - poor condition
 - Lethargy
 - Depression
 - Lameness
 - Death (Smith and Girish, 2008).

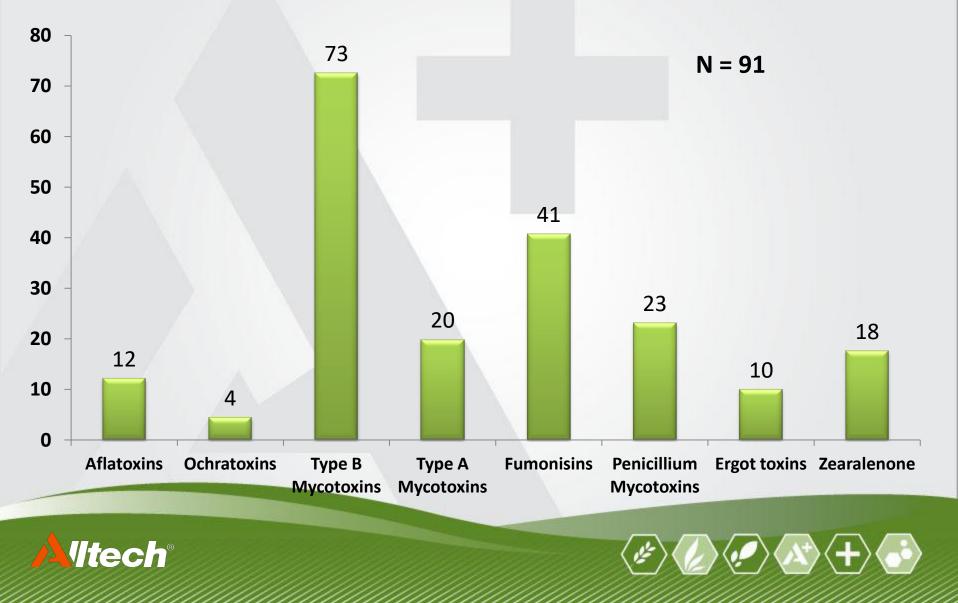
Review of effects of mycotoxins in horses

Mycotoxins in Farm Animals, 2008: 47-70 ISBN: 978-81-7895-312-0 Editors: Isabelle P. Oswald and Ionelia Taranu

The effects of feed borne mycotoxins on equine performance and metabolism

T. K. Smith and C. K. Girish Department of Animal and Poultry Science, University of Guelph Guelph, NIG 2WI, Canada

9. Conclusions


Equines are sensitive to most of the mycotoxins that have been reported in field outbreaks and controlled experiments. They are the most susceptible species to fumonisin toxicity. Horses of all ages are susceptible to feed-borne mycotoxins. Mycotoxins have been shown to affect various physiological systems including digestive, respiratory, reproductive and nervous systems. Despite vigilant management and efficient quality control systems, contamination of horse feed with mycotoxins may be unavoidable. Equines may be more sensitive to naturally contaminated feedstuffs because of the presence of multiple mycotoxins and complex interactions between them causing severe adverse effects. Mycotoxins may cause significant economic losses to equine industries because of their adverse effects on performance, neurological status and reproduction. Inclusion of contaminated feedstuffs in equine diets should, therefore, be avoided. An improved understanding of the toxicokinetics of mycotoxins in equines is important for the development of preventative and therapeutic strategies to reduce the adverse effects of mycotoxins. Mycotoxins cause significant economic losses to equine industries because of their adverse effects on performance, neurological status and reproduction.

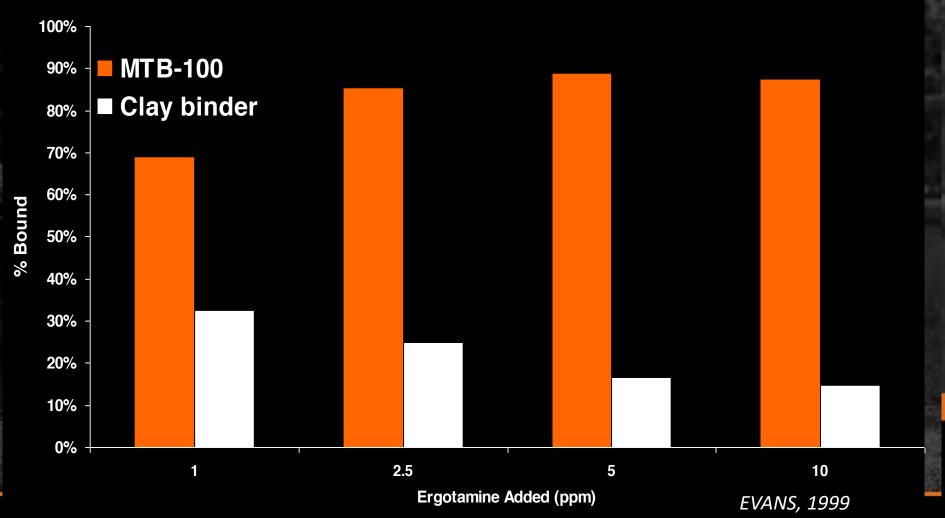
Mycotoxin exposure

- aflatoxins, zearalenone and fumonisins.
- ↑ feeding of haylage = highlighted threat
- avoiding contamination = difficult
- testing = expensive (and variable!)
- mycotoxin adsorbent
 - low effective inclusion rate
 - stablity over a wide pH range
 - high capacity and affinity
 - glucomannan oligosaccharide

% of Samples Positive for Mycotoxins

Multiple Mycotoxins For Entire Dataset

Number of mycotoxins	% Samples	
0	12.09	
1	27.47	
2	13.19	
3 to 5	32.97	
5 to 10	13.19	
>10	1.10	


 $\langle \mathbf{t}^{\mathbf{t}} \rangle \langle \mathbf{t} \rangle \langle \mathbf$

The effect of mycotoxins on feed intake in horses

	Average daily intake, kg		
Group	0-7 days	7-14 days	14-21 days
Control	2.80	2.80	2.80
Mycotoxins	1.03	1.01	0.96
Mycotoxins + Mycosorb 0.2%	1.81	1.60	1.52
Nis I all the lite	the second second	Consider the second	Shirly Repair

Mycosorb's ability (1 kg/tonne) to bind ergotamine in the presence of 4 different concentrations

The green stuff

Algae and horses

Anti-inflammatory properties

Potential modification of glycaemic response

Semen quality

Reduction of pro-inflammatory compound

- Prostaglandin E2 (PGE₂)
 - Key mediator in inflammatory reaction
 - Vasodilator
- n-3 PUFA known to modulate inflammatory reaction in other species
- Hall *et al.*, 2004 corn oil [↑] PGE2 compared with fish oil
 - Potential benefits of fish oil wrt inflammatory diseases
- Ross *et al.*, 2011 PGE₂ lower in joint fluid with EPA/DHA

DHA reduced deterioration in motility following storage

Effect of feeding a DHA-enriched nutriceutical on the percent reduction in motility, compared to fresh samples (mean \pm S.D.) of cooled and frozen-thawed semen (n = 8 per sample)

Semen sample	Motility ^a	Control	Nutriceutical-fed	P-value
24 h cooled	↓TMOT (%) ↓PMOT (%)	$\begin{array}{c} 23\pm16\\ 29\pm26\end{array}$	$\begin{array}{c} 22\pm12\\ 20\pm18 \end{array}$	0.78 0.33
48 h cooled	↓TMOT (%) ↓PMOT (%)	$\begin{array}{c} 45\ \pm\ 21\\ 48\ \pm\ 30\end{array}$	$\begin{array}{c} 30\pm11\\ 32\pm18 \end{array}$	0.06 0.05
Frozen thawed	↓TMOT (%) ↓PMOT (%)	$73 \pm 7 \\ 73 \pm 12$	$\begin{array}{c} 68\pm9\\ 67\pm16\end{array}$	0.04 0.03

^a Percent decrease in sperm motility i.e., decrease in total sperm motility (↓TMOT), decrease in progressive sperm motility (↓PMOT), from motility in fresh samples.

Brinsko et al., 2004

Beneficial effects on progressive sperm motility after cold storage

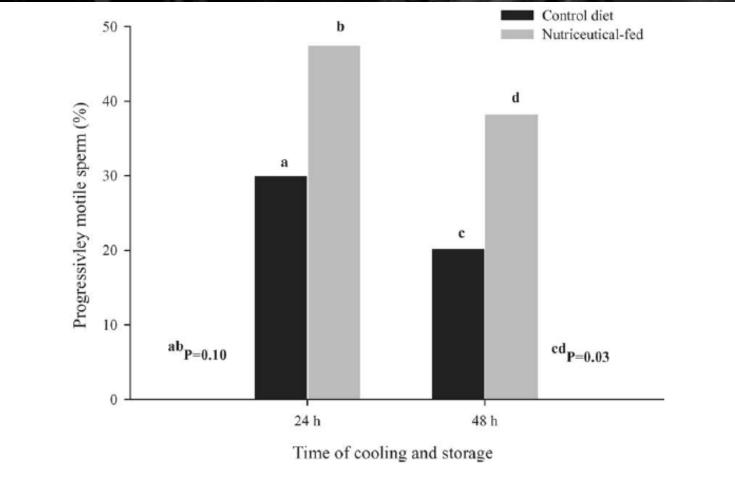
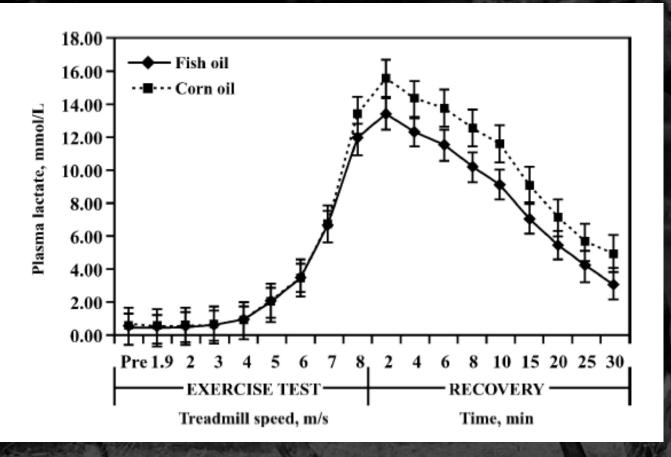
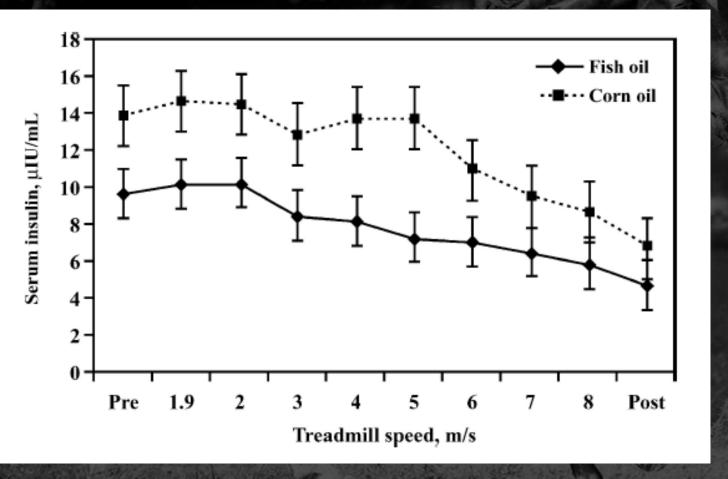



Fig. 1. Effect of feeding a DHA-enriched nutriceutical on semen of stallions having <40% progressive sperm motility after 24 h of cooling and storage (n = 4).

Brinsko *et al.,* 2004

Recovery following exercise


Mirrored by lower heart rates

lacksquare

Lower heart rate – longer to fatigue

O'Connor *et al.*, 2012

Increased glucose:insulin ratio

Potential higher insulin sensitivity

O'Connor *et al.*, 2012

Changes to Lifeforce from Alltech

3 Formulations of LIFEFORCE –

 3 Formulations of LIFEFORCE to recognise different segments & applications:

Lifeforce Focus: for the Leisure Horse in low activity

Lifeforce Formula: for the Breeding Horse & Leisure horse in moderate activity

Lifeforce Elite: for Competition Horses & those in high activity

• Product available end July 2012

Since you can't avoid the external and internal stresses of everyday life, a sound utrition program is essential. The five active ingredients in LIFEFORCE[®] have all been demonstrated to be effective Hrough peer-reviewed research done in horses, thus helping mhance performance Hrough nutries. Ensure you horse has every advantage possible by utilizing a natural, scientifically proven supplement like LIFEFORCE[®].

WWW.LIFEFORCEHORSE.COM

LIFEFORCE - Details & Messaging

	LIFEFORCE LIFEFORCE		LIFEFORCE	
	Focus	Formula	Elite	
Packaging	White Lid & Label	Orange Lid & Label	Black Lid & Platinum Label	
Focus	Leisure riders	Breeding/ Development	Performance horses in stress situations	
Messages	Preventative Care	Mare & Foal	Anti-inflammatory	
LIFEFORCE LIFEFORCE	Gut Health	Immunity	Digestive Health	
UREFORCE LIFECTOR		Optimise development	Antioxidant	

LIFEFORD

Conclusion

Biotechnology can be a valuable tool for improving the productivity of our horses

Thank you

