

CL 100NB Nickel-based alloy

Nickel-based alloy powder (Inconel 718), chemical composition according to ASTM B 637 UNS 07718

CL 100NB is a nickel-based alloy for the production of components for high-temperature applications.

28 **Ni** 58,69

CHEMICAL COMPOSITION

Component	Indicative value (%)
Ni	50,0 – 55,0
Cr	17,0 – 21,0
Nb	4,75 – 5,50
Мо	2,80 – 3,30
Ti	0,65 – 1,15
Al	0,20 – 0,80
Со	0,0 – 1,0
С	0,0 – 0,08
Mn	0,00 – 0,35
Si	0,00 – 0,35
Р	0,000 – 0,015
S	0,000 – 0,015
В	0,000 – 0,006
Cu	0 – 0,3

RANGE OF APPLICATION

Parts for high-temperature applications. Typical applications are turbine construction (aviation or stationary turbines) or exhaust tracts within motor sports applications.

TECHNICAL DATA AFTER RECOMMENDED HEAT TREATMENT

Yield point R _{p0,2} ¹	1000 – 1100 N/mm²
Tensile Strength R _m ¹	1250 – 1350 N/mm²
Elongation A ¹	8 – 12 %
Young's modulus ¹	approx. 200.000 N/mm ²
Thermal conductivity λ 2	approx. 12 W/mK
Coefficient of thermal expansion ²	approx. 13 ⋅ 10 ⁻⁶ K ⁻¹

¹ Tensile test at 20°C according to DIN EN 50125.

CL 100NB Nickel-based alloy

MICROSECTION

Test piece (x 20 magnification)

Test piece (x 100 magnification)

HEAT TREATMENT

Perform heat treatment under an argon atmosphere in two steps:

At first solution annealing (980°C for one hour), afterwards allow the components to cool in the oven. In the second step aging (720°C for 8 hours). After this procedure allow the component to cool down to 620°C within two hours. Afterwards maintain this temperature for further 8 hours.

Concept Laser GmbH

An der Zeil 8 D 96215 Lichtenfels

Sales Department

info@concept-laser.de T: +49 (0) 95 71. 1679 200 F: +49 (0) 95 71. 1679 299

MICROSTRUCTURE

Components made from nickel-based alloy CL 100NB display a homogeneous, dense structure after they are manufactured by means of the metal laser melting process LaserCUSING®.

² Specification according to the material manufacturer's data sheet.